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Cut-off frequencies are well known in acoustic ducts to be the thresholds of propagation 
and evanescence. If at one end of a duct the piston oscillates at very near the cut-off 
frequency, cross-duct resonance occurs and the linearized theory breaks down. This 
paper studies the nonlinear response, near a cut-off frequency of a guided wave, as 
an initial-boundary-value problem. The asymptotic state is shown to be governed 
by a modified cubic Schrodinger equation. Numerical solutions are then obtained for 
inputs of finite and long duration. In  addition to the characteristics of the input 
envelope, two quantities control the transient phenomenon : frequency detuning and 
nonlinearity. Under certain circumstances, energy can be trapped near the piston 
long after a short-lived input has expired, while for a sustained input there is no sign 
of a steady state. Dissipation is not considered. 

1. Introduction 
Cut-off frequencies are commonly associated with unidirectional wave guides in 

various physical contexts. One of the most familiar guides with such a feature is an 
acoustic duct (see e.g. Morse & Ingard 1968). It is well known that there exists a 
discrete set of frequencies, each of which is a threshold of a new propagating mode. 
Below the threshold the mode changes drastically to an evanescent wave. According 
to the linearized theory, the response to a sinusoidally driven piston a t  one end 
becomes indefinitely large if the driving frequency approaches a cut-off frequency. 
The physical reason for such a growth is the vanishing of the relevant group velocity 
and the consequent entrapment of energy near the piston. Because a cut-off frequency 
is a natural frequency for the two-dimensional vibration in the cross-sectional plane, 
the breakdown is also referred to as the cross-duct resonance in the acoustics literature. 
Viscous effects and the elasticity of the piston or of the duct walls are two possible 
avenues by which the linearized theory can be rescued to yield finite responses. 

In  a semi-infinite water channel with a uniform rectangular cross-section, there 
exists also a set of cut-off frequencies for gravity wave modes which are non-uniform 
in the direction across the width of the channel. These modes can be produced by a 
piston performing sinusoidal rotational oscillations about a vertical axis. Again, 
excitation near a cut-off produces large responses (Ursell 1952). Mahony (1971) 
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considered the effect of nonlinearity on the free surface, but only treated the steady 
state which is periodic with the same frequency as the piston. A nonlinear ordinary 
differential equation for the complex amplitude C was obtained, 

c,, + hC + lJIC12C = 0, (1.1) 

where Y is a constant, and h is the detuning factor, proportional to the difference 
between the actual frequency and the cut-off frequency ( A  > 0 above cut-off, A < 0 
below cut-off). At the piston the boundary condition was C(0)  = 1, but at infinity 
Mahony chose a special radiation condition such that A cc e i k z  for h > 0 (above cut- 
off), and C cc e-kx below cut-off, as in the linearized theory. On an amplitude-frequency 
diagram the final solution was not unlike that for a nonlinear spring. Ockendon & 
Ockendon (1973) also studied similar problems with essentially the same assumptions. 
They discussed certain non-uniqueness in the choice of the radiation condition and 
suggested that a stability consideration would be needed as in the case of a nonlinear 
spring. More recently Barnard, Mahony & Pritchard (1977) extended the theory of 
Mahony (1971) and performed laboratory experiments. A term accounting for the 
cumulative effect of viscous damping in the boundary layers was added to the govern- 
ing equation. The damping coefficient was determined from an accompanying experi- 
ment for standing waves. The modified equation was integrated from a point in the 
far field towards the wavemaker so that the boundary condition on the wavemaker 
was met. Barnard et al. pointed out that the inviscid solution was non-unique, and 
suggested the study of an initial-value problem. 

As cut-off frequencies are of general interest in waveguides, an examination of 
certain initial-value problems is interesting in its own right, in addition to shedding 
light on the theoretical question of whether a sinusoidal forcing necessarily leads to a 
steady periodic response at the driving frequency in the limit of large t .  In this paper 
a physically simple case of a uniform fluid duct with rigid walls is treated. The appro- 
ximate governing equation is found to be a cubic nonlinear Schrodinger equation which 
appears in many physical contexts: 

iC,+CX,+Y~C(2C+hC = 0. (1.2) 

Numerical results are presented for inputs of both finite and very long durations, and 
contrasted with linear results. Evidence will be given to show that the transient 
response to a short-lived input envelope depends critically on the sign of detuning 
(above or below cut-off) and on the sign of nonlinearity. For a sustained input there 
are cases where a steady state is not reached. 

2. An acoustic duct of uniform cross-section 
Consider a uniform semi-infinite duct. At  the end x = 0, a rigid piston oscillates at  

the frequency w. The exact nonlinear equations for an isentropic flow can be reduced 
t o  the following (e.g. Keller & Millman 1971) 
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where V stands for the three-dimensional gradient operator, to be distinguished from 
the two-dimensional operator V 2  = 8; + af used later. The following equation of state 
will be adopted : 

where K = po, y = 1.4 for a perfect gas, and K = po(ap/ap)o, y = 1 for water. From 
(2.3) it may be deduced that 

P -Po = K[(P/PO)Y - 11, (2.3) 

u2- ua = ( y -  1)sp *, 
Po P(P) 

with U2 = dp/dp, Ug = (dp/dp),. 
Equation (2.2) may be written for # as follows: 

(2.4) 

U $ V 2 # - 3  at2 = 2Vd. V 2  at + i ( V # .  V) (V#)2+ (7- 1) [:+ t(Vq5)2] V2#. (2.5) 

Let us introduce the following dimensionless variables : 

(2.6) 
d’ = d/Voa, PI = P/K,  PI = P/Po, 
t’ = tu,/u,  (x’, y’,  2 ’ )  = (2, y ,  Z ) / U ,  

where a is the cross-sectional dimension of the duct. After dropping the primes the 
dimensionless form of (2.5) is obtained simply by replacing Uo by unity. In dimension- 
less variables the boundary conditions are 

a#/an = 0 on as (duct walls), (2.7) 

- = e  ax % + v ~ . v E )  on x=ct(y,z, t)=E: [ - - iw,  f e-int+* 1, (aE (2.8) 

$ - + O  as X -  +a for t < w ,  (2.9) 

# = a#/at = o ( t  = 0, o < x < a). (2.10) 

The small parameter e is the measure of piston amplitude, and depends on x and y .  
The frequency w, is the eigenvalue associated with the orthonormal eigenfunction 
h,(y, z) ,  both of which are defined by the following equations: 

V2h,+w2,h, = 0 inS(fluidinduct), (2.11) 

ahJan = 0 on as, (2.12) 

where wo < w1 < w2 < ... . Note that w,, = 0 and h, = 1. Clearly h, is a natural mode 
in the cross-sectional plane. 

The linearized steady-state response to an input of frequency IR can be expressed as 

(2.13 a) 

where 

with 

( 2 . 1 3 ~ )  
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being the inner product integrated over the cross-section, and f independent of t .  
If, however, Q is close to a particular urn and f, + 0, then this solution is no longer as 
small as O(E), and the linearized approximation fails. Moreover, the variation of C, 
can be rewritten as 

(2 .14a)  e-iomt exp [i(W - w k ) i  x - i(Q2 - w k )  t/2w,1 (Q > w,) 
or 

which shows a slow modulation in x and t .  Now let a be formally defined by 

or equivalently, (2.15) 

with h = O(1) being the detuning parameter. We must then anticipate the need for 
the slow variables X = xel-a and T = te*l-a), with a still unknown. 

For simplicity we shall assume w', = 0(1) (i.e. low modes) so that the order-of- 
magnitude assumption behind (2 .15)  need not be modified. 

We now focus attention on a neighbourhood of the cut-off frequency w,. For 
simplicity 

f f n  hn(Y, 2) (2.16) 

is assumed, leaving the more general case for later comment. It may be seen from 
(2 .5 )  that a t  O(sZa) the quadratic forcing terms contain only second harmonics. 
Assuming that 2wn is not a resonant frequency, there is no secularity a t  O(sBa). At 
O(e9a) the cubic terms lead to secular first harmonics which must be removed by 
adding ~ 2 - " ( a 2 $ ~ / a t a T , a 2 $ ~ / a X ~ ) ;  therefore a = 4, as in Mahony (1971).  We now 
introduce 

X = B*X, T = st/&w,, SZ = w , + ~ B / ~ w , ,  (2 .17)  

and the perturbation expansion 

(2.18) 

The implied perturbation equations from (2 .5)  can be obtained in a routine manner. 
We note first that the boundary condition on the piston becomes 

on x = 0. The governing equations for $1 are 

in S, 

!b= o onas,  
an 

841 - je-int + * at X = 0, ax 

(2 .20a)  

(2.20 b )  

( 2 . 2 0 4  

- =  '$1 o a t  x = 0. (2.20 a) 
ax 
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The solution can be easily shown to be independent of the fa& co-ordinate x, hence 
V reduces to V ,  and 

(2.21) 
subject to 

a$,,/aX = 0, aC/ax = f on X = 0 (2.22a, b) 
in view of  (2 .20~) .  

$1 = $lO(X, T )  + h,(y, z )  [C(X ,  T )  rmt+ *I, 

At O(s) the governing equations are 

v2$2 - - a2'2 = qz2(ice-2int+ *) in S,  (2.23a) 

a$,/an = 0 on as, (2.23b) 

a t 2  

where 
a$,/ax = 0 at x = 0, 

qz2 = - 2w,(Vh,)2+ (y -  1 )  @:hi. 

The solution is again independent of x, and may be given explicitly by 

with 
$2(y, z ,  t ,  X ,  T) = Y2(iCe-2int+ *), (2.24a) 

where (a,b) denotes a scalar product defined as in (2 .13~) .  Note that, from (2.22b) 
and (2.24a), 

At O(d) we have 

(2.25) 

+ q33(C3e-3"t + *) - - (2.26a) 

a$,/an = 0 onas,  (2.263) 
ax2 9 

- -  a'3 - [(Vh,)2~n-2@21(ifnCe-2int+*)+(Vh,)2 on x = 0, ( 2 . 2 6 ~ )  ax 
where 

q31 = 2(Vh, * v$2) w, + ( y  - - w, hnV2@L-, + 2w, @2v2hn1 

+Q(Vh,. V )  (Vhfl)2+Q(y- 1) (Vh,)'V2h,, (2.26d) 

433 = 2(Vh, * W Z )  3% + (Y - 1 )  (W,h,V2$2 + 2(3,$2V2h,) 
+i(Vh,. V )  (Vh,J2+ icy- 1 )  (Vhfl)2V2h,L. (2.26e) 

Notice that both qal and q33 are functions of y and z only. The solution $3 may be 
divided into two parts, one of which is independent of x and accounts for the forcing 
terms in (2.26a), while the other depends on x and accounts for ( 2 . 2 6 ~ ) :  

(2.27) 

Referring to (2.21), since hn(Ce-ifiT+*) is the homogeneous solution to the two- 

$3 = #A1)(% z, t ,  x, + $F'(x, Y ,  2, t ) .  
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dimensional (y, z )  problem governing #3, the first harmonic terms on the right-hand 
side of (2.26a) must be orthogonal to h, (Fredholm alternative). Thus 

(2.28 a) 
ac a2c 
aT ax2 

i-+AC+-+KlC12C = 0, 

(2.283) 

In addition, C must satisfy (2.22b), and vanishes both at X +-+a0 for all t and 

Finally, solvability for the zeroth harmonic $30 requires that 
T = 0 for all X. 

a2#10/ax2 = o ( x  > 0). (2.29) 

It follows from ( 2 . 2 2 ~ )  that a#,,/aX = 0 for all X > 0. Thus depends only on T 
and possibly on x in a much slower manner; its effect on the dynamic pressure is at  
most of the order of c*aq510/aT. Limiting our attention to the leading order O(E*), it 
is only necessary to solve for C. 

Equation (2.28a) with A = 0 appears in nonlinear optics and in water waves; in 
both cases the sign of K is known to affect the physics in important ways. In optics 
(Karpman 1975), K > 0 corresponds to self-focusing, and K < 0 to defocusing; while 
in water waves K > 0 corresponds to instability, and K < 0 to stability to side-band 
disturbances. It is thus important to  know first the sign of K for an acoustic duct. 
Since (2.283) is unfortunately too complicated for any general conclusion, we examine 
the special case of a circular duct with axially symmetric cut-off modes. The nth 
normalized eigenfunction is 

where oL = 3.8317, w2 = 7.0156, wj = 10.1735 ... are the roots of Ji(wn) = 0. By 
computing the scalar products of (2.24b) and (2.28b) numerically we obtain the 
following values for the first few modes: 

hn = Jo(wnT)/m-'Jo(w,), 

for air 

for water (y  = 1.0) K = 27-31, ... . 
(y = 1.4) K = - 1.096, - 2-798, - 18.305, ...; 

The large numerical values of K are due to the facts that K = O(wz) and that w1 is 
already close to 4. It is therefore convenient to renormalize the variables as follows: 

where!, is the maximum off,. Modifications may be needed for very high modes, but 
are not pursued here. 

The initial-boundary-value problem becomes 

( 2 . 3 1 ~ )  
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b = 0 (2 > 0, rii = 0). (2.31d) 

From here on, we shall omit the symbol A for brevity. 

of radius a admits axially symmetric cross-duct modes 
Comments on degenerate cases. Of all elementary cross sections, the circular duct 

h,,,Jr, 0) - Jo(womr) with J;(um) = 0, (2.32) 

which can be dealt with by (2.28) without modification. However two different non- 
axially-symmetric modes can share the same cut-off frequency (degeneracy) t 

cos me [ $1 Jn(unmr) [sin ,el 3 J i ( o , , ) = O  ( n = 1 , 2 , 3  ,...; m = l , 2 , 3  ,... ). 
(2.33) 

For the doubly degenerate case we must assume at  the leading order 

$, = $lo +-{[c,(X, T) @(y, z )  + C,(X, T )  h$)(y, z) ]  e-int + *}. (2.34) 

It can then be shown that C, and C, are governed by coupled simultaneous equations 
of the following type: 

aC, awn i - aT + ACn + + {IC112 (Kn,Cl+ Kn2C2) + IC212(Kn3C1 + Kn4C2) 

+ K n S C : C ~ + K n B C $ C ~ }  = 0 (n = 1,2), (2.35) 
subject to the boundary condition 

ac,/ax =fn (x = 0, T > 0 1 ,  (2.36) 

and the C, vanish as X + 00. These equations can be used to study the nonlinear 
energy transfer between two modes. 

The case of a rectangular duct is infinitely degenerate. In  normalized form the duct 
has dimensionless sides 2 and 2b; the cross-duct (cut-off) frequencies are 

w,, = $(nz + m2/b2)*. 

Clearly Nu,, = o ~ , , , , ~  for N = 1,2,3, . .. . In principle, (2.34) must be generalized 
to an infinite series, and an infinite set of coupled equations resembling (2.35) will 
result. 

Referring to (2.28), if K vanishes identically one must pursue terms up to the fourth 
order. It can then be shown that the slow variables must be X = E ~ X  and T = ~%/20 , , ,  
and the cubic nonlinear term in (2.28) must be replaced by one of fourth order. 

Lastly, if f(y, z )  contains other non-resonating components f,, (m + n)  in addition 
to f,, it can also be shown that the regular part of the solution is O(E) and does not 
affect the behaviour of C. 

Details of all these modifications may be found in Aranha (1978). 

t For a semicircular duct with a plane wall along the diameter 0 = 0, r, only COB me is 
relevant, and there is no degeneracy. 
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3. The linearized solution? 
To provide a basis for comparison, it is instructive to examine the linearized solution 

to (2.31) first. For a constant envelope, f J T )  = H(T) in (2.31b), where H is the 
Heaviside function; the linearized solution can be obtained via Laplace transforms as 

1 + i j T d7 exp [iX2/4(T - 7 )  + iA(T - T ) ]  C ( X ,  T )  = -- 
(277)t 0 (T - 7)4 

The solution C ( X ,  T )  for a rectangular envelope pulse of duration To is simply 

For any time T ,  (3.1) or (3.2) can be integrated numerically for the spatial variation. 
The time variation C ( 0 , T )  of C at the piston can be obtained more explicitly. 

Setting X = 0 in (3.1), a change of variable gives 

-(l+i)(2T/r)f ( A  = O ) ,  ( 3 . 3 ~ )  

(4) &f[( T 1 +i) (*lhlWI ( A  5 0). (3.3b) 

For the critical case A = 0 (at cut-off), C(0,T) grows as JT until the pulse expires. 
If the duration of the pulse is To, the total energy input by the piston is 

C(0,T)  = 

After the expiration of the pulse, the piston pressure is 

C(0,T) = - ( I  +i) TO 

which decreases as T-& for large T .  

(3.4) 

(3.5) 

Away from cut-off, (3.3 b), for h + 0, can be written alternatively in terms of Fresnel 

which oscillate and approach constant limits as JAlT + co: 

C(0, T )  +- (I) IAJ-4, IAJT --f 00 ( A  >< 0). (3.7) 

This result can be taken as the steady-state limit for finite A, or the limit of large lAl 
if T is kept fixed. If the input is of finite duration To, the time history for t > To can be 
inferred from (32) and (3.6), and also diminishes as T-4 for T B 1. For a sustained 
input and for To = 3, figure 1 shows the following magnitude: 

t An 'exact' linearized solution can also be constructed without the asymptotic approxima- 
tion leading to ( 2 . 3 1 ~ ~ ) .  
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T 
FIQURE I.  IC(0, T)I for a sustained input (-) and 8 pulse input of duration 

To = 3 (- - -) for the linearized problem. 
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FIGURE 2. Evolution profiles IC(X, T)I for the linearized problem. 
( a )  h = 1; ( b )  0; (c)  -1.  
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Note that it does not depend on the sign of A. The work done by the piston up to any 
time T < T, is 

From the known properties of Fresnel integrals, it can be shown that E increases 
monotonically with the pulse duration if h > 0. For h < 0, however, E oscillates with 
respect to the duration, so that a longer pulse does not necessarily imply greater 
energy input as one might suspect naively. Thus the sign change of h changes the 
behaviour of the solution near the piston. The typical evolution profiles of IC(X, T ) J  
are shown in figures 2 (a-c) for To = 3 and h = 0, ? 1. 

4. Numerical scheme for the nonlinar initial-boundary-value problem 
Equations (2.3 1 a d )  were solved numerically by a semi-implicit finite-difference 

scheme of the Crank-Nicolson type: 

Cn+l = C* + +iAT(C;q + Cgx + hC" + 2(sgn K) IC.12 C"), 

where Cn = C(nAT), and the nonlinear term was quasi-linearized by the estimate 

+ 2(sgn K) I biz 
(4.1) 

(4.2) 

Equation (4.2) has a truncation error O(AT)2, so that (4.1) has only O(AT)3 error at  
each step, or a global truncation error O(AT)2 for T = O(1). The spatial derivatives 
were replaced by second-order centred differences, and a sufficiently large domain for 
X was decided by numerical experiments, so that up to a certain prescribed time the 
effects of the outer boundary were negligible. All the computations were checked to 
within a few per cent for the global energy conservation 

b = Cn + iAT(Cgx + ACn + 2(sgn KICnEJ2Cn). 

E(T)  = -Z9jo*dTt(CC$)l x=o = /~dXtlC(Xr,T)12, (4.3) 

which can be deduced from (2.31~).  Our experience shows that (4.1) is stable, and 
satisfactory results can be obtained without iteration for the nonlinear term if AT is 
sufficiently small. 

As the basis for deciding the step sizes, the numerical scheme was tested against the 
known soliton solution of (2 .31~) .  For K > 0, there exists a permanent wave of the 
form 

(4.4) 

where a, U are unrelated constants. In our numerical experiments, we chose X ,  
sufficiently large and negative so that C ( X ,  0 )  = 0 initially for all X > 0, and imposed 
the piston condition (2.31 b) as 

CX(0, T )  = C$(O, T ) .  

Our computed results were found to deviate by less than 2 or 3 % from (4.4) after the 
soliton had propagated a distance O( 10) times its width. The step sizes in all compu- 

C 8 ( X ,  T )  = k asecha(X- Xo- UT) exp {i[gV(X - X,) - ($V2az- A)  TI), 
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T 
FIGURE 3. IC(0, T)I for To = 2, K < 0. 

tations were AX = 0.2 and A T  = 0.025. The total spatial extent was between five to 
seven times that corresponding to the total duration of computation. 

Two types of piston condition were studied for K 3 0. First we consider rectangular 
pulse inputs for f,(T), of unit amplitude and fmite duration To, to give some under- 
standing of the solutions of (2.31) for different sgn K, A and To. Then, to see whether 
a steady-state solution can be ultimately reached, the initial-boundary-value problem 
was solved for steady forcing (To --+ 00). In  all our computations, it was found desirable 
to smooth the step jump of the input over a few time steps, which removed small high- 
frequency oscillations in the solution. The overall solution is only negligibly affected 
by such changes in the starting profile. Smooth transitions consisting of a half- 
sinusoid of duration To = O( 1) at both ends of the pulse were also tested. These results 
involved an additional time scale, but were found not to differ qualitatively from those 
with step inputs; hence they are not discussed here. 

5. Nonlinear response to envelope pulses of finite duration 

For an input of duration To = 3, IC(0, T ) J  is plotted in figure 3 for a range of A. For 
T < To, the curves are qualitatively different from the linear predictions, especially 
for A B 0. The amplitude attained was larger for greater A. After the input pulse 
expired, the pressure on the piston decreased smoothly with time, which is similar to 
the linearized results. The spatial evolution for ICl was quite similar for the different 
As, and qualitatively similar to the linear results shown in figure 2. The disturbance 
moved away from the piston like a step front, with a spreading oscillatory front 
followed by a rather smooth and flat region, which decayed in height rn time increased 
(cf. figure 3). Other values of To were also computed with generally similar results, and 
are not presented. 

5.1. The m e  K < 0 

16 F L M  121 



476 

4.5 

J .  A .  Aranhu, D. K .  P. Yue and C. C. Mei 

I I 
( b )  I 

I 1 I 
10 20 30 0' 

T 
FIGURE 4. IC(0, T)I for To = 2, K > 0. 

5.2. The case K > 0 

This case exhibits the most interesting variety of features which are vastly different 
from the linearized results. 

For a very short input of To = &, the solution did not deviate very much from the 
linearized case. In  particular, IC(0, T)I grew as the input continued, but decayed in 
time after the pulse expired. The spatial variations resembled closely those of figure 2, 
and are omitted. 

As the pulse length increases, deviations from the linear results became apparent. 
Figures 4(a, b) show IC(0,T)I for To = 2. The most striking difference is for h < 0 
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FLQURE 5. Space-time evolutions of (C(X ,  T) I ; To = 2, K > 0. Note that different scales are 
used to bring out the main features. (a )  h = 0 ;  (b)  1 ;  ( 0 )  - 1;  (d )  2; (e) -2. 

(figure 4b), where IC(0, T ) J  does not decay rapidly, but oscillates in time long after 
the input has ended at  To = 2. The space-time evolution is shown in figure 5. For 
A > 0 (above cut-off), most of the energy was radiated away in a single leading peak, 
which propagated at a constant velocity with very little change in form. For h = 0, 
- 1, - 2, there was some initial leak of energy into the undisturbed region, but most 
of the energy remained near the piston and underwent a periodic recurrence with little 
change in amplitude, in agreement with figure 4 (b). Thus energy trapping was manifest 
in an even stronger way in the nonlinear theory. 

We have studied pulse inputs of even longer durations, To = 3 and 5. Only the case 
16-2 
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I f \  / X = f  

4 
( b )  

X = O  

T 
FIGURE 6. IC(0,T)I for '11, = 6, K > 0. (a) h > 0 ;  (b)  h < 0. 

of To = 5 is shown in figures 6(a, b) and 7. The main features are basically the mme, 
i.e. above 8ome threshold value of h (close to but not necessarily zero) isolated peaks 
were radiated away. The number of such peaks increased with To (one for To = 1,2, 
two for To = 3 and three for To = 5) .  Below the threshold, the dominant feature is 
that of trapping near X = 0, clearly shown in figure 6 (b). Near the threshold value of 
A, both peak radiation and trapping coexisted. By comparing graphs for various To, 
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FIQIJRE 7. Space-time evolutions of IC(X, T)I ; To = 5, K > 0. 

(a) A = 1); ( b )  0 ;  (c) 1; (d) -1 ;  (e) 2; (f) -2. 

we found that the threshold rose above the linear cut-off frequency with increasing 
duration To. 

is replaced by X and 
8 by Y, where X and Y correspond respectively to the directions along and transverse 
to that of wave propagation. It is known (Karpman 1975) that, for K > 0, asufficiently 
large initial pulse disintegrates into several peaks propagating away in the (X, Y ) -  
plane; this is called se2f-channelling. It is also known that eigenmodes exist which 
represent waves trapped near Y = 0 ;  this is called seZf-focusing. Our computations 

In nonlinear optical guides, ( 2 . 3 1 ~ )  with h = 0 also holds if 
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FIGURE 8. IC(0, T)I for To + 03, K c 0. 

showed that, in acoustic wave-guides, there was peak emission above a cut-off frequency 
(self-channelling in the (T ,  X)-plane), and wave-trapping below a cut-off frequency 
(self-focusing). In  some small neighbourhood of the threshold, both features could 
be present. 

6. Nonlinear response to a sustained input (To +- co) 
When A + 0, the linearized theory predicted a steady state of constant magnitude 

for any finite X if the uniform envelope of sinusoidal forcing at  the piston persisted 
indefinitely. Recall from figure 1 and from the clause after (3.6) that, for A + 0, the 
approach to the steady state was always accompanied by decaying oscillations, 
while for h = 0 the linearized solution grew asymptotically as Ti. The important 
question here is whether a steady state can always be expected when nonlinearity is 
present . 

6.1. Thecase K < 0 

Equations (2.31 a-e) were solved for a step-function forcing 

f,(T) = H(T) for - 3  < h < 4. 

In all the cases, except near h = 3, a steady state was quickly reached, as shown in 
figure 8 for I C(0, T )  I. The asymptotic value for T 9 1 (actually T = 30) of the pressure 
on the piston is displayed by crosses in figure 9 as a function of A. For comparison the 
linear steady-state limits according to (3.7) are plotted as solid !ines. Departure from 
the linear theory (cf. (3.7)) near h = 0 i, most rerrzrkable. The differences between 
linear and nonlinear results are evident in the range - 3 < h < 3. Outside this range 
the difference diminished. In the nonlinear theory there was a critical A, very near 3, 
beyond which the steady-state C(0, T )  dropped down toward the linear limit. When 
h was but slightly greater than 3, C(0,  T )  oscillated significantly with very slow decay, 
and the plotted points are obtained by averaging the converging envelopes at T = 30. 
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FIQURE 9. Steady-state limit of C(0, T) as a function of h for To 3 a, K < 0. + , nonlinear 
theory terminated at T = 30. The values taken are the mean of the converging envelopes of an 
oscillatory curve. Solid lines represent the linear theory according to (3.7). 

The deviation from the average is largest ( & 0.15) at A = 3, but diminishes to i- 0.05 
at A = 3.5 and & 0.002 at A = 4. Why this special behaviour occurred near A = 3 is 
not yet clear theoretically. It has not been possible for us to discern whether the upper 
branch curled back to the right to form a triple-value region of hysteresis for A > 3. 
The spatial profiles for the different As are qualitatively very similar, and only the 
case A = 0 is presented in figure 10, showing energy-trapping near the piston. 

Since the steady-state limit is seen numerically to exist, iaC/aT may be dropped 
from (2.31), which can then be integrated to give 

(6.1) 
-i(c*c,-ccg) = - 2 9 c c g  = 2 p p E  80, 

for all X, where 8, is the phase of C. If 8, is assumed as constant, it  can be shown that 

c, 1c(o,00)1 = [ (A+&(A~+~) ) -J* ,  8, = (6.2) 

at the piston. For all other X the steady-state limit C ( X )  is given by 

C = A+ sec {arccos A*/Co - A+X) (X > 0, A > 0) .  (6.4) 

These results can be inferred from Barnard et al. (1977). We found (6.2) and (6.3) to 
be in close agreement with our numerical resulb for h c 0. However, for A > 0 
disagreement was significant. Upon examining (6.1) at X = 0, which is just the rate 
of work aE/aT done by the piston to the fluid (see (4.3)), it was found from the 
numerical solution that E(T)  approached a constant for A c 0, hence ae,/aX N 0. 
But E ( T )  increased almost linearly with T for A 2 0 when T -+ 00; hence aO,/i?X N- const 



482 J .  A .  Aranha, D. K .  P. Yue and C. C. Mei 

2 

1 .5 

ICI 
1 

0.5 

0 
0 

20 

15 

T 
10 

5 

0 
5 10 1'5 

X 

FIGURE 10. Space-time evolution of IC(X, T) I ; To + m, K < 0, h = 0. 

at X = 0. This qualitative dependence on the sign of h was consistent with the 
linearized approximation by (3.9). 

6.2. The cme K > 0 

Figure 11 shows IC(0, T)I for h = 0. Now it is striking that a steady state was never 
reached even up to T = 125. Although the boundary condition implied no time scale, 
two modulation periods are apparent from the result, indicating that the trappod 
disturbance near X = 0 underwent multiperiod recurrence. The space-time plot 
figure 12 shows that there was an outgoing peak trailed by a train of smaller humps 
which emerged continuously from the piston. (Here, as in all the earlier space-time 
profiles, the very-small-amplitude waves leading the main disturbances were due to 
numerical noise probably caused by the abrupt jump in the boundary condition.) 
The humps following the peak in this case were of much larger amplitudes and re- 
mained when we varied the step size of our numerical scheme. A comparison of figures 
11 and 12 revealed a one-to-one correspondence between the generation of such humps 
and the envelope oscillation at X = 0. The leading peak, like those in figures 5 and 7, 
advanced at  a constant velocity ( 2: 2). The height of the peak oscillated with decaying 
amplitude, reaching an asymptotic value of about 1 with a profile approaching that 
of soliton (4.4) as T increased. Similar computations for the pressure at  the piston 
for h = - 1 and 1 again showed that a steady state was not reached. The evolution 
profiles C ( X ,  T) were very similar to the case of h = 0, and are not presented here. 
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7. Concluding remarks 

An inviscid numerical theory based on an asymptotic approximation has been 
presented for the transient nonlinear response in an acoustic duct. For a piston oscil- 
lating with a rectangular pulse envelope it is found that, when K > 0, the response 
changes drastically when the piston frequency changes from above to below the cut- 
off frequency. In contrast, there is no such distinction in the linearized limit. For a 
piston oscillating with a constant envelope, a steady state is reached only if K < 0. 
Strictly speaking, different initial conditions or pulse shapes may lead to different 
responses. On the basis of our numerical experiments we can only conclude that a 
steady state cannot always be expected in the inviscid case if K > 0. 

Equation (2.31 a)  can be shown to govern the near-cut-off behaviour for a variety of 
waveguides when dissipation is ignored. The case studied by Barnard et al. (1977) for 
surface water waves in a channel is one such example. This is because (2.17) and (2.18) 
are also valid, and the time derivative in the free-surface condition 

+tt - g+z = nonlinear terms 

adds, at O ( d ) ,  the term i aC/dT to all the other secular terms shown in (1.1). Another 
simple example is a taut string supported laterally by a cubic-elastic foundation 
(Aranha 1978). 

The effect of dissipation in the boundary layer next to the duct wall can be examined 
as in Barnard et al. for surface water waves. In particular the spatial attenuation rate 
can be estimated from the following linear boundary-value problem for the inviscid 
region outside the boundary layer : 
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FIGURE 12. Space-time evolution of IC(X, T) I ; To i, co, K > 0, A = 

T 

0. 

where n and 8 are locally orthogonal co-ordinates normal and tangential to the duct 
wall in the cross-sectional plane, and 

is essentially the square-root of the reciprocal of the Reynolds number R = wa8/v. 
Equation (7.1) is just the Helmholtz equation, while (7.2) represents the normal flux 
induced at the outer edge of the wall boundary layer by the viscous effect within. To 
help estimate the importance of viscosity, note that w / U ,  = O( 1) for the lowest cut- 
off mode. Taking a = 30 cm, then R-' = IA21 = for air. 
Hence A = O(E)  if E = O(O.01); this will be assumed from here on. Letting 

for water and 4 x 

+ = eikx+.(y,4, (7.4) 

it is easy to find, by expanding + and k in half-powers of E (see e.g. Mei & Liu 1973), 
that 

where $o is the inviscid cross-duct mode corresponding to w,. As was first noted by 
Barnard et al. the attenuation rate is proportional to d / A f  N R-f, in contrast to 
R-) when s2 is away from cut-off. Thus viscous influence is comparable to the effects 
of nonlinearity and frequency detuning, and important modification of the inviscid 
result can be expected, especially with regard to the variation along the duct. 
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However, for axially symmetrical modes allo/as = 0.t It can then be found by 
similar argument that 

From the second term above, the length scale of viscous attenuation is A - l -  Rh 
times longer than the scale O(s-4) associated with detuning and nonlinear evolution. 
Therefore the results presented in this paper are quantitatively relevant for axially 
symmetrical modes in a closed acoustic duct. 
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